0 Daumen
235 Aufrufe

Ich hätte nur eine ganz kurze Frage bezüglich Physik: Warum steht bei der Taylorentwicklung 2. Ordnung im räumlichen Fall (1/2)*(a*∇)2*f(x) und nicht (1/2)*a22*f(x). Bzw. wie kann man beweisen, das diese zwei Terme nicht das gleiche sind? Danke schon mal im Vorraus :)

Gefragt von
Da hab ich leider keine grosse Ahnung. Aber das Mal nach dem Nabla-Operator steht ja nicht für Multiplikation. Vielleicht wirst du aus den folgenden Formeln etwas schlauer:

http://de.wikipedia.org/wiki/Nabla-Operator

Gemäss Ergänzung in https://www.mathelounge.de/55818/gegeben-sei-der-vektor-a2-betrachte-als-1dim-funktion-von-a2 weiss ich, dass a ein Vektor ist. Zu Beginn ist a = (0,a2,0) ein Vektor.

a*Nabla würde nach den dortigen Werten nur die 2. Komponente aus dem Nabla mit mit a multiplizieren.

a^2 wäre nach einem Skalarprodukt a2^2

Und das wird nachher mit dem Nablaquadrat multipliziert. Ich nehme an, dass hier die Dimension dann anders ist.  Aber du weisst sicher besser, was bei diesem Nabla-Operator rauskommt.

Bitte logge dich ein oder registriere dich, um die Frage zu beantworten.

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Nanolounge! Stell deine Frage sofort und kostenfrei

x
Made by a lovely community
...