0 Daumen
141 Aufrufe

Hallo Zusammen,

gegeben ist die Lagrange Formel mit U(c1,c2) = ln(c1) + ln(c2) und somit L = c2 - (1+r) p1/p2 * (m1 - c1) + θ (U(c1, c2) - Ù).

Durch die Bedingungen erster Odnung und entsprechendem Einsetzen bin ich bereits zu folgenden Ergebnissen für c1 und c2 gekommen:

c2 = (1+r) * p1/p2 * c1    und durch einsetzen in die Lagrange Funktion ergibt sich:

c1 = (p2/(1+r)*p1 * eÙ)0,5   und durch einsetzen dieses Ergebnisses in die Formel von c2:

c2 = (1+r)* p1/p2 * (p2/(1+r)*p1 * eÙ)0,5

Laut Lösungsschema stimmen meine Ergebnisse auch soweit. Allerdings verstehe ich den letzten Schritt nicht, nachdem für c2 = ((1+r) * p1/p2 * eÙ)0,5 als endgültige Lösung gilt.

Mir ist klar, dass einfach der Ausdruck vor der Klammer mit in die Klammer einbezogen wurde, allerdings verstehe ich nicht, wo der Ausdruck p1/p2 vor der Klammer hin ist. 

Vielen Dank schon mal im voraus für die Hilfe!

von

1 Antwort

0 Daumen

Hi,
Du hast $$ c_2 = (1+r)\cdot \frac{p_1}{p_2} \cdot \left( \frac{p_2}{1+r} \cdot p_1 \cdot e^\hat U \right)^{0,5} = \frac{1+r}{(1+r)^{0.5}} \cdot \frac{p_1}{p_2} \cdot \frac{p_2^{0.5}}{p_1^{0.5}}  \left( e^{\hat U} \right)^{0.5}  $$
Und das ist gleich dem verlangten Ergebnis, wie man durch  kürzen und zusammenfassen sieht.

von

Ein anderes Problem?

Stell deine Frage

Ähnliche Fragen

0 Daumen
0 Antworten
0 Daumen
0 Antworten
0 Daumen
1 Antwort
+2 Daumen
0 Antworten

Willkommen bei der Nanolounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community