0 Daumen
350 Aufrufe

wie bestimme ich die Randkurve einer Fläche, bzw. was ist das überhaupt?

Ich habe zum Beispiel die Fläche S gegeben, die eine Art offene Dose darstellt:

Z={ (x, y, z): x^2+y^2=4, 0<z<1 } u { (x, y, 0): x^2+y^2<4 },

und soll den Fluss  Int( rotF(x,y,z)•vdo bestimmen.

Die Randkurve ist hier anscheinend nur der obere Rand bzw. Kreis bei z=1.

Jetzt verstehe ich nicht ganz, warum man quasi die komplette Geometrie weglassen kann und einfach das Integral über F(x)*dl über die Randkurve bilden kann.

Danke für Erklärungen!

von

Jetzt verstehe ich nicht ganz, warum man quasi die komplette Geometrie weglassen kann und einfach das Integral über F(x)*dl über die Randkurve bilden kann.

$$\int_a^bf'(x)\,dx=f(b)-f(a)$$

Jetzt verstehe ich nicht ganz, warum man quasi die komplette Geometrie (das Intervall [a, b]) weglassen kann und einfach die Funktionswerte in den Randpunkten nehmen kann.

gutes Argument :)

aber die Menge, die ich als Beispiel habe besteht ja aus zwei Teilmengen, die nicht wirklich stetig sind, die Oberflächennormalenvektoren haben einen 90° Winkel bei z=0.

Na und? Willst Du darauf hinaus, dass an der Schnittstelle Boden/Mantel keine Normale existiert? Waehle sie doch beliebig, es spielt für das Integral keine Rolle. Oder zerlege $$\int_{\text{Mantel}\cup\text{Boden}}=\int_{\text{Mantel}}+\int_{\text{Boden}}$$ und wende den Stokesschen Satz 2x an. Das ist eine gute Uebung zur Bestimmung der richtigen Durchlaufrichtung für das Zirkulationsintegral.

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Nanolounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community