+1 Punkt
205 Aufrufe

Hallo der gezeigte Lösungsweg zum Berechnen eines Potentials zum geg. Gradientenfeld muss einen oder mehrere Fehler haben??

$$V=\begin{matrix} 2xy+2z*sin(x)*cos(x) \\ { x }^{ 2 }+z \\ y+{ sin }^{ 2 }(x) \end{matrix}$$

$$\frac { df }{ dx } =2xy+2z*sin(x)*cos(x)$$

$$\frac { df }{ dx } =2xy+z*sin(2x)$$

$$f(x,y,z)=\int { 2xy+z*sin(2x)\quad dx+g(y,z) } $$

$$f(x,y,z)={ x }^{ 2 }y-\frac { 1 }{ 2 } *z*cos(2x)+g(y,z)$$

$$\frac { \delta f }{ \delta y } =x^{ 2 }+\frac { \delta  }{ \delta y } g(y,z)\Leftrightarrow { x }^{ 2 }+z$$

$$\frac { \delta  }{ \delta y } g(y,z)=z$$

$$(y,z)=\int { z } dy$$

$$g(y,z)=zy+h(z)$$

$$f(x,y,z)={ x }^{ 2 }y-\frac { 1 }{ 2 } *z*cos(2x)+zy+h(z)$$

$$\frac { \delta f }{ \delta z } =-\frac { 1 }{ 2 } *cos(2x)+y+\frac { \delta  }{ \delta z } h(z)$$

$$-\frac { 1 }{ 2 } *cos(2x)+y+\frac { \delta  }{ \delta z } h(z)\Leftrightarrow y+{ sin }^{ 2 }(x)$$

$$\frac { \delta  }{ \delta z } h(z)=\frac { 1 }{ 2 } ({ sin }^{ 2 }(x)+{ cos }^{ 2 }(x))=\frac { 1 }{ 2 } { sin }(2x)$$

$$f(x,y,z)={ x }^{ 2 }y-\frac { 1 }{ 2 } *z*cos(2x)+zy+\frac { 1 }{ 2 } { sin }(2x)$$




Hallo der gezeigte Lösungsweg zum Berechnen eines Potentials zum geg. Gradientenfeld muss einen oder mehrere Fehler haben??


Danke im Vorraus

Chris

von

Bitte logge dich ein oder registriere dich, um die Frage zu beantworten.

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Nanolounge! Stell deine Frage sofort und kostenfrei

x
Made by a lovely community
...