0 Daumen
1,1k Aufrufe

Der mittlere Abstand eines Mondes zu seinem Planeten beträgt 3,8x106km, seine Umlaufzeit ist 2d 16h 25min. Berechnen Sie die Masse des Planeten.

Ich brauche das dringend bis morgen, Anregungen wären super!!

Avatar von

3 Antworten

0 Daumen
 
Beste Antwort

Um den Mond der Massse \(m_{\text{Mond}}\) auf der (kreisförmigen) Umlaufbahn zu halten, muss die Zentrifugalbeschleunigung \(a=v^2/r\) betragen. Allgemein gilt \(F=m \cdot a\). Die Graviationskraft \(F\) hält ihn in der Bahn - man kann also schreiben

$$\frac{F}{m_{\text{Mond}}} = \frac{m_{\text{Mond}} \cdot m_{\text{Planet}}}{m_{\text{Mond}} \cdot r^2} \cdot G= \frac{v^2}{r}$$

$$\Rightarrow m_{\text{Planet}} = \frac{v^2 r}{G}$$

Ist die Umlaufzeit \(U\), so ist \(v=2\pi r/U\). Macht

$$\begin{aligned} m_{\text{Planet}} &= \frac{v^2 r}{G}= \frac{4\pi^2 r^3}{U^2 \cdot G} \\&= \frac{4\pi^2 (3,8 \cdot 10^9 \text{m})^3 }{ (231900 \text{s})^2\cdot 6,67408 \cdot 10^{-11} \frac{\text{m}^3}{\text{kg} \cdot \text{s}^2}} \approx 6,036 \cdot 10^{29} \text{kg} \end{aligned}$$

Avatar von 4,7 k
0 Daumen

Hallo kallewirsch,

die Masse M dieses Planeten erhält man aus dem Ansatz

Zentripetalkraft = Gravitationskraft    ⇔    m * ω2 * r  = G * m * M / r2         [ ω = 2π / T ]

   ⇔  M  =  4 π2 * r3  / ( G * T)  ≈#  6.0355 ·1029 kg  ≈  6 ·1029 kg 

( wegen des mit Sicherheit stark gerundeten Abstands r macht eine genauere Angabe wohl keinen Sinn)     

#     r ≈ 3,8 * 109 m    ,    T = (2·24·3600 + 16·3600 + 25·60) s = 231900 s  

,     G = 6,6741 * 10-11 m3 / (kg * s2)

Gruß Wolfgang  

Avatar von 9,1 k
0 Daumen

Ich würde das wie folgt rechnen:

Ansatz

F = 4·pi2·m·r/t2 = G·m·M/r2

Auflösen nach M, Werte einsetzen und ausrechnen.

Ich komme damit auf M = 6.037·1029 kg


Avatar von 10 k

Verdammt schwerer Planet. Der wiegt fast soviel wie unsere Sonne.

Ein anderes Problem?

Stell deine Frage