+1 Daumen
101 Aufrufe

Servus!
Habe wieder eine Physikaufgabe:
Im Koordinatenursprung der Abbildung befindet sich die Ladung Q. Ein Objekt (Ladung
q) wird entlang der eingezeichneten spiralförmigen Bahn von innen nach außen bewegt.


Unbenannt.PNG

Stellen Sie den Bahnverlauf als parametrisierte Kurve \( \overrightarrow{\mathrm{s}}(\varphi)=\left(\begin{array}{l}\mathrm{x}(\varphi) \\ \mathrm{y}(\varphi)\end{array}\right) \) dar und berechnen Sie das Wegintegral \( \mathrm{W}=\int \limits_{\varphi_{0}}^{\varphi_{1}} \overrightarrow{\mathrm{F}}(\overrightarrow{\mathrm{s}}) \cdot \mathrm{d} \overrightarrow{\mathrm{s}} \) mit der Coulombkraft \( \overrightarrow{\mathrm{F}}(\overrightarrow{\mathrm{s}}) . \)

Welche Bedeutung hat der berechnete Ausdruck und welche Eigenschaft muss \( \overrightarrow{\mathrm{F}}(\overrightarrow{\mathrm{s}}) \) allgemein haben, damit sich das Ergebnis dermaßen vereinfacht?

von

1 Antwort

+2 Daumen

Hallo

das Feld muss konservativ sein, dann ist das Wegintegral unabhängig vom Weg und nur von Anfangs und Endpunkt abhängig, damit es konservativ ist muss es die div einer Potentialfunktion sein. (die kennst du ja wohl im Coulombfeld.

|r|=r0+k*phi  r=(x_0+k*cos(phi),k*sin(phi))

  jetzt F=c*r , F, r Vektoren c aus Coulomb in F den Weg einsetzen und integrieren Fdr  mit dr=dr/dphi *dphi

Gruß lul

von 13 k

Danke! Wie kann ich dann den Bahnverlauf als parametrisierte Kurve darstellen? \(\vec{F}(\vec{s})\) zu finden sollte dann ja keine Probleme machen.

die Kurve hast ich dir doch als r=.. direkt geliefert?

allerdings mit einem Fehler

s(t)=(r0+k*t*cos(t),k*t*sin(t))

lul

Hast du noch einen Tipp wie man auf \(d\vec{s}=\frac{d\vec{s}}{d\varphi} *d\varphi\) kommt?

wie leitest du denn nach der Kettenregel ab?

da steht eigentlich nur ⃗/d=⃗/ mit d multiplizieren.

Gruss lul

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Nanolounge! Stell deine Frage sofort und kostenfrei

x
Made by a lovely community