0 Daumen
135 Aufrufe

Aufgabe:

Berechnen Sie die resultierende Kraft \( \vec{F} \) der skizzierten (Ebenen) Kräfte nach Betrag und Richtung (Richtungswinkel α mit der x-achse).


Problem/Ansatz:

Ich muss die Resultierende Kraft der skizzierten Kräfte berechnen, ich habe ein Bild mit eingefügt. Ich weiß nicht wie ich die Aufgabe hier lösen soll, wäre euch dankbar, wenn ihr mir helfen könntetIMG_20191020_182436.jpg

von
@Wolfgang: Oder spielen pädagogische Überlegungen im Forum keine Rolle mehr?

Du beharrst auf deiner Meinung. Von mir aus.

Das letzte Wort sollten wir unter der Antwort von Mathecoach auch evita und dem Mathecoach überlassen.

Mathematikaufgaben verdienen eine genaue Lösung.

Kommentieren können diejenigen, die die Frage gestellt haben, sofort und immer.

Wenn man gleich noch eine weitere Rechenmöglichkeit kennenlernt / repetiert, schadet das nichts.

Das Problem, dass arctan nicht immer den korrekten Richtungswinkel liefert, solltest du als Repetition immer mal wieder erwähnen.

@Lu

Das letzte Wort sollten wir unter der Antwort von Mathecoach auch evita und dem Mathecoach überlassen.

Mach ich gern, vor allem, weil MC sich dort sehr einsichtig gezeigt hat.

Aber als Redakteurin ist dir schon klar, dass ich obigen Kommentar direkt unter der Frage nur zufällig finden konnte, obwohl ich der Angesprochene bin?

Der Umgang mit meiner Person durch die Redaktion und die Forumsleitung hat aber dazu geführt, dass ich im Forum nur noch so wenig schreibe, dass ich meine Posts im Auge behalten kann. Das mache ich bei den Chats, bei denen ich nach meiner Erfahrung Manipulationen nicht auschließen kann.

Du beharrst auf deiner Meinung. 

Ein Nichtbeharren auf einer Meinung, von der man fest überzeugt ist, wäre Selbstverleugnung.

Und ich bin nun einmal der festen Überzeugung, dass eine Antwort, die mit hoher Wahrscheinlichkeit über dem Ausbildungsniveau einer Fragestellerin liegt, aufgrund pädagogischer Bedenken nicht nicht die beste sein kann!

Von mir aus.

Das klingt für mich nicht sehr einsichtig :-)

Und der Rest deines obigen Kommentars betrifft mich eigentlich nicht.

@Wolfgang: In der Physik bleiben die meisten Einträge so lange im Liveticker, dass du sie automatisch mitbekommst, da du regelmässig vorbeischaust.

Verfolge https://www.mathelounge.de/599000/changelog-fur-die-lounge-software-jahr-2019 , damit du mitbekommst, was sich so ändert, bzw. was du als Moderator tun kannst und was nicht.

2 Antworten

+2 Daumen

Du teilst jede Kraft über den Winkel in einen x und y Anteil
auf.
Dann summierst du alle x und y Anteile getrennt
und erhältst die beiden Kräfte F(x) und F(y).
Davon die Resultierende Kraft über den Pythagoras
berechnen.
Den resulltierenden Winkel über z.B. tan = F(y) /  F (x)

Bei Bedarf nachfragen.


von 6,8 k
Den resulltierenden Winkel über z.B. tan(Winkel)  = F(y) /  F (x)

Das Argument des Tangens (Winke) müsstest du noch ergänzen. "tan = F(y) /  F (x)" ist mathematisch nicht ok. Ausserdem wäre ein Hinweis zum richtigen Quadranten bestimmt auch nützlich.

+1 Daumen

z = 120·EXP(i·30°) + 100·EXP(i·70°) + 80·EXP(i·108°) + 40·EXP(i·230°) = 87.69219884 + 199.4120056·i = 217.8·EXP(i·66.26°)

von 9,3 k

Ich würde das genau gleich rechnen. Die Schreibweise in Polarkoordinaten mit Grad statt mit Bogenmass sieht einfach etwas ungewohnt aus.

mit Vektoren etwas schöner und eher im Sinne des Fragestellers

120·[COS(30°), SIN(30°)] + 100·[COS(70°), SIN(70°)] + 80·[COS(108°), SIN(108°)] + 40·[COS(230°), SIN(230°)] = [87.69219884, 199.4120056]

Betrag

|[87.69219884, 199.4120056]| = 217.8 N

Winkel

ARCTAN(199.4120056/87.69219884) = 66.26°

Ich würde das genau gleich rechnen.

Woher nehmt ihr die Überzeugung, dass Evita mit komplexen Zahlen rechnen kann?

mit Vektoren etwas schöner und eher im Sinne des Fragestellers

Was sollte das dann 5 Stunden vorher? Möglicherweise hat sich Evita bereits entsetzt abgewendet.

Im Übrigen kommen solche Darstellungen für Kraftpfeile im KS in Aufgabenstellungen in der Schulphysik auch schon vor, bevor man mit Vektoren in Koordinatendarstellung rechnet.

Was sollte das dann 5 Stunden vorher?

Ich selber habe die Tags Vektoren und Vektorgeometrie erst zufällig später gelesen als Lu mir einen Daumen spendiert hat.

Wir hatten damals in der Mathematik das Thema komplexe Zahlen tatsächlich schon vor den Vektoren gehabt und haben Kräfte dann auch immer mit komplexen Zahlen berechnet gehabt.

Aber du hast völlig recht. Von mir auf andere zu schließen darf man nicht. Daher habe ich die Rechnung mit Vektoren noch angefügt. Trotzdem ist es vielleicht nützlich zu wissen das die komplexen Zahlen für die zweidimensionale Betrachtung von Kräften nützlich sein können.

Möglicherweise hat sich Evita bereits entsetzt abgewendet.

Warum sollte sie? georgborn hat bereits vorher geschildert dass es eigentlich nur darum geht x- und y-Komponenten der Kräfte getrennt zu betrachten. Ob man das jetzt als komplexe Zahlen oder Vektoren oder komplett in getrennter Schreibweise macht ist letztendlich egal.

@Wolfgang: https://www.mathelounge.de/662196/wie-berechne-ich-hier-die-resultierende-kraft Evita hatte die Frage in der Mathelounge gestellt.

Falls es Mathe ist, sollte das Ergebnis keine Rundungsfehler aufweisen. Zudem sind komplexe Zahlen zumindest eine schöne Ergänzung zum vielleicht aktuellen Thema. Die Antwort mit Vektoren war zudem schon da.

Ist hier arctan(199.4120056/87.69219884) nicht Glückssache?

Glücklicherweise zeigt der resultierende Vektor nicht in den 3. Quadranten.

@Mathecoach: Habe nun georgborn auch einen Punkt gegeben.

Glücklicherweise zeigt der resultierende Vektor nicht in den 3. Quadranten.

Das erkennt man doch bei MC direkt an den positiven Vorzeichen der Koordinaten. Bei Georgborn allerdings (ohne Rechnung) nicht.

Welche Vorstellung von Glück hast du? "Glücklicherweise" sagt, dass doch, dass das hier richtig ist. Die erste Anwort von Mathecoach ist immer noch die beste. Evita sollte nun wissen, dass man nicht blind "arctan" nehmen kann.

Ich danke euch allen. Ich war anfangs tatsächlich etwas entsetzt, hab es dann aber auch verstanden. Danke dass ihr euch die Zeit genommen habt, euch das anzusehen.

Falls du weitere Fragen hast stell´ sie
wieder ein.
mfg Georg

@Lu

Die erste Anwort von Mathecoach ist immer noch die beste.

Wenn du damit tatsächlich das meinst, was unter "Antwort" 5 Stunden unkommentiert dastand, frage ich mich echt, wie du dieses Statement begründen willst! Oder spielen pädagogische Überlegungen im Forum keine Rolle mehr?

Ich erspare mir weitere Kommentare, weil ich nicht der Grund für eine Löschung des Diskussionskomplexes sein will.

Evita hat es ja auf den Punkt gebracht:

Ich war anfangs tatsächlich etwas entsetzt.
Ich war anfangs tatsächlich etwas entsetzt

Das brauchst du nicht. Wir kennen ja nicht genau deinen Kenntnisstand. Oft gibt es immer mehrere Methoden etwas zu lösen. Oft mache ich ohne viele große Erklärungen eine Rechnung wie ich es lösen würde. Du findest daher bei mir meistens nur einen Ansatz und ein Ergebnis.

Am besten ist es daher schon wenn die Fragesteller direkt in der Frage mitteilen wo sie die Probleme haben.

Du hättest z.B. schreiben können das du nicht weißt wie du die Kräfte als Vektoren schreiben sollst. Dann wäre ich z.B. darauf speziell eingegangen.

Wie gesagt hatte ich erst später gesehen, dass ihr es über Vektoren lösen sollt.

Also tut mir leid wenn du wegen mir etwas entsetzt warst. Das war nicht meine Absicht.

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Nanolounge! Stell deine Frage sofort und kostenfrei

x
Made by a lovely community
...