0 Daumen
1,2k Aufrufe

104028460_1574363669389271_5013619310318289893_o.jpg

Text erkannt:

Aufgabe
29: Frequenzfilter Ein , Bandpass-Filter" ist ein Schaltkreis, der nur ein schmales Frequenzband hindurchlässt, wobei niedrigere und höhere Frequenzen \( \left.\begin{array}{l}\sqrt{R_{1}} \\ P=0,5 k \Omega\end{array}\right\}\left[\begin{array}{l}2 \\ k_{2}\end{array}\right] \) herausgefiltert werden. Betrachten Sie den Bandpassfilter aus der nebenstehenden Abbildung. Was ist die (komplexe) Gesamt-Impedanz \( X ? \) Eine Wechselspannung mit der maximalen Spannung \( U_{\text {in }} \) und der Frequenz \( f \) wird an den Schaltkreis angelegt wird. Was ist die maximale (reale) Ausgangsspannung Uout? Tragen Sie Uout(f) im Bereich von \( f \leq 50 \) kHz auf mit \( R_{1}=0,5 k \Omega, L=9 \mathrm{mH}, R_{2}=1 \mathrm{k} \Omega, C=2 \mathrm{nF} \)
Lesen Sie aus Ihrer Auftragung ab, welche Frequenz \( \mathrm{f}_{0} \) am wenigsten herausgefiltert wird.

Könnte mir jemand bei der Berechnung dieser Aufgabe helfen? Verstehe leider nicht, wie man das was man da rechnen muss. Danke schonmal

Avatar von

1 Antwort

0 Daumen

Hallo

 du rechnest wie mit ohmschen Widerständen, nur dass du die komplexen einsetzt.

R1ud L sind in Reihe zu der Parallelschaltung von   L und der Reihenschaltung von R2 und C

also zuerst ZL||(ZC+R2) das dann in Reihe zu R1

im übrigen kann man sowas auch unter Bandpass googeln!

lul

Avatar von 33 k

Bei Google hab ich auch danach gesucht, aber es da nicht so wirklich verstanden. Aber Danke schon mal

Ein anderes Problem?

Stell deine Frage