+1 Punkt
246 Aufrufe
Hi, hier eine Frage aus der Physik zum Thema Wärme.

In eine Schmelze von 1 kg Gold bei 1500°C wird 100 g Aluminium mit 20°C geworfen (idealisiert, ohne Wärmeaustausch mit der Umgebung oder dem Topf). Welche Mischungstemperatur stellt sich ein?

Tipp: Beide Metalle ändern ihren Aggregatzustand.

 

c(Gold) = 128 J/kgK (fest und flüssig), spez. Schmelzwärme Gold qs,G= 63kJ/kg, Schmelzpunkt Gold 1064°C

 

c(Aluminium) = 897 J/kgK, (fest und flüssig), spez. Schmelzwärme Aluminium qs,A= 398 kJ/kg, Schmelzpunkt Aluminium 660°C

 

Lg
Gefragt von

1 Antwort

0 Daumen
 
Beste Antwort

c(Au) = 128 J/kgK
m(Au) = 1kg
T(Au) = 1773,15 K
qs(Au) = 63 000 J/kg

c(Al) = 897 J/kgK
m(Al) = 0,1 kg
T(Al) = 293,15 K
qs(Al) = 398 000 J/kg
 

Die Kapazitäten addieren sich:

C(Au) = c(Au)*m(Au);
C(Al) = c(Al)*m(Al);

C = C(Au)+C(Al) = c(Au)*m(Au) + c(Al)*m(Al);

Zusammenhang:

Q = T*C;

Es muss also noch die Wärmeenergie berechnet werden:

Q = T(Au)*C(Au) + qs(Au)*m(Au) + T(Al)*C(Al) - qs(Al)*m(Al);
 

T = Q / C =

= { T(Au)*c(Au)*m(Au) + qs(Au)*m(Au) + T(Al)*c(Al)*m(Al) - qs(Al)*m(Al) } / ...

    { c(Au)*m(Au) + c(Al)*m(Al) } =

1269,91 K = 996,76°C;

 

Bei Fragen, Fehlern oder Anmerkungen --> Kommentar.

 

lg JR

Beantwortet von

Vielen Dank!

Ich habe die Aufgabe ein paar Tage zuvor gelöst, jedoch habe ich ein anderes Ergebnis rausbekommen, die Endgleichung ist die gleiche:

 

 

Nach dem Einsetzen der Werte, komme ich jedes mal auf 1163,45 K. Muss ich irgendetwas beachten?

Danke

{ 1kg*128J/(kg K)*1773,15K + 1kg*63000J/kg + 0,1kg*897J/(kg K)*293,15K - 0,1kg*398000J/kg } /

{ 0,1kg*897J/(kg K) + 1kg*128J/(kg K) } = 1269,91 K

 

Ich kann Dir leider nicht sagen wo der Fehler liegt, ob bei Dir oder bei mir. Ich hab Dir jedenfalls mal die Werte aufgeschrieben, die ich einsetze. Vielleicht findest so heraus, was nicht stimmt. Sag mir bitte bescheid, wenn Du mehr weißt.

 

lg JR

Ich hab den Fehler. Ich habe statt 63000 J/kg 63 kJ/kg eingesetzt.

Ich glaube dir ist oben ein Tippfehler unterlaufen. Wenn ich statt der 297,15 K 293,15 K einsetze, komme ich auf das gleiche Ergebnis.

Danke!
Ja, das ist richtig. Fehler ist ausgebessert.

Ich hab Dir mal was zu den Lautsprechern aufgeschrieben. Vielleicht ist das ja brauchbar. schau's Dir mal an. ;)

 

lg JR

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Nanolounge! Stell deine Frage sofort und kostenfrei

x
Made by a lovely community
...