0 Daumen
209 Aufrufe

Der skizzierte Mechanismus besteht aus einer Walze (Schwerpunkt S_1, Masse
m_1, TrĂ€gheitsmoment J_1), die ohne zu gleiten auf einer Unterlage rollt und ĂŒber
eine Feder-DĂ€mpfer-Kombination (Federkonstante c, DĂ€mpferkonstante d) an
die Umgebung gekoppelt ist. An einem Seil, das um eine Umlenkrolle
(Schwerpunkt S_2, Masse m_2, TrĂ€gheitsmoment J_2) gefĂŒhrt wird, ist eine Last
(Schwerpunkt S_3, Masse m_3) elastisch an einer Feder (Federkonstante c)
aufgehÀngt. Die Lagen der Schwerpunkte von Walze und Last werden durch die
Koordinaten u und q beschrieben.

3.jpg

Es geht um die FederkrÀfte.

Zuerst F1 = \( cu+d\dot u\)

wieso +? sollte das die -...- sein? da Feder und DĂ€mpfer nach links ziehen?  also negativ? oder geht es hier um Betrag?

Und wie kommt man auf F2? 
Laut Musterlösung: F2 = \( c(q - \frac {u}{2})\)
Der erste Teil mit cq ist klar. wie kommt man - u/2? 
Ich denke wir mĂŒssen w_2 nutzen. Also


\( c(l-l_{0}),l_{0}=0 \\mit\\ l = \phi_{2}*r \\ mit \\ w_{2} = \frac {\dot u}{2r} \)
Nun das integrieren und \( \phi_{2}\) bekommen? 
Dann oben einsetzen.
\( = \frac {1}{2} cu \)
Woher kommt aber das "-"? 

mfg

von

1.

es geht um w_2... wie kommt man drauf?

2.

und F_2, die Kraft an der feder mit Federkonstante  c:

wie kommt man auf -u/2?


3. wieso ist F_1 positiv?


mfg

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Nanolounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community