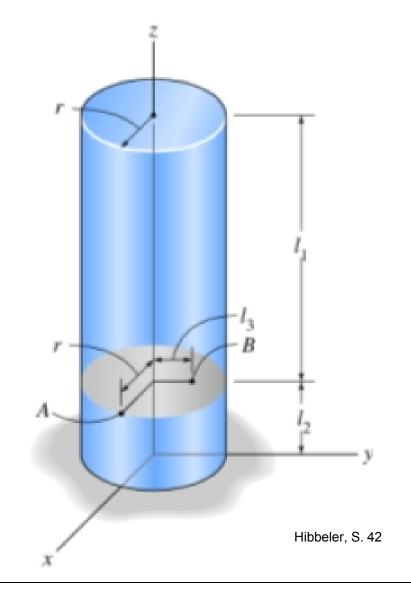


Übungsaufgaben: Gruppenarbeit 1

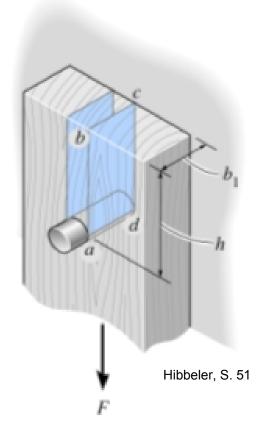
 Eine Lampe der Masse m wird durch zwei Stangen AB und BC gehalten. Bestimmen Sie die mittlere Normalspannung in jeder Stange, unter der Annahme, dass AB einen Durchmesser d_{AB} und BC einen Durchmesser d_{BC} hat.

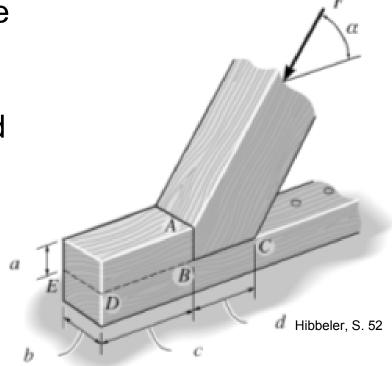
$$\alpha = 60^{\circ}$$
, $\tan \beta = \frac{3}{4}$,
 $m = 80 \text{ kg}$, $d_{AB} = 10 \text{ mm}$,
 $d_{BC} = 8 \text{ mm}$



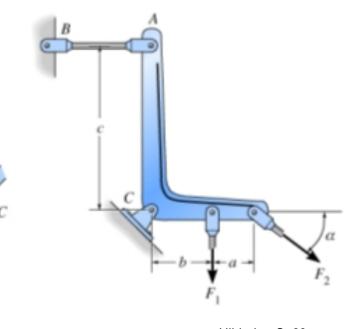
 Ein Zylinder besteht aus Stahl und hat ein spezifisches Gewicht γ_{St}. Bestimmen Sie die mittlere Druckspannung, die in den Punkten A und B wirkt.

I1 = 800 mm, I2 = 200 mm, I3 = 100 mm, r = 200 mm, $\gamma_{St} = 80 \text{ kN/m}^3$


Das Bauteil AC ist einer Vertikalkraft F ausgesetzt. Bestimmen Sie die Position x dieser Kraft so, dass die mittlere Druckspannung an dem glatten Auflager C gleich der mittleren Zugspanung im Zuganker AB wird. Der Zuganker hat eine Querschnittsfläche von A_{AB}, die Kontaktfläche in C ist A_C. $I = 200 \text{ mm}, F = 3 \text{ kN}, A_C = 650$ mm^2 , $A_{AB} = 400 \text{ mm}^2$

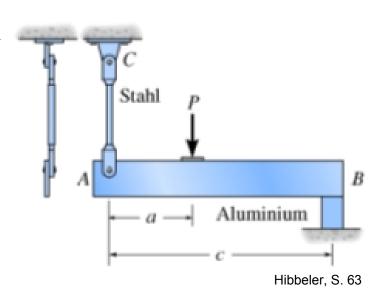

Die gezeigte Holzstütze wird durch einen Stahlstift mit dem Durchmesser d₁ gehalten, der selbst in der Wand befestigt ist. Die Stütze ist mit der vertikalen Kraft F belastet. Berechnen Sie die mittlere Schubspannung im Stift an der Wand und die mittlere Schubspannung entlang der beiden gezeichneten Ebenen der Stütze, von der eine mit abcd gekennzeichnet ist. $b_1 = 20 \text{ mm}, h = 40 \text{ mm}, F = 5 \text{ kN}, d_1 = 10$ mm

 Die gezeigte Strebe ist durch eine Druckkraft F belastet. Bestimmen Sie die mittlere Druckspannung entlang der glatten, durch AB und BC definierten Kontaktflächen sowie die mittlere Schubspannung entlang der durch EDB definierten Horizontalen Fläche


c = 75 mm, d = 50 mm, F = 3000 N, $\tan \alpha = 4/3$

a = 25 mm, b = 40 mm,

Der Winkelhebel ist der dargestellten Belastung ausgesetzt. Bestimmen Sie den erforderlichen Durchmesser des Stahlbolzens bei C, wenn die zulässige Schubspannung gegeben ist. Die Durchmesser sind in 5 mm Schritten verfügbar a = 50 mm, b = 75 mm, $c = 200 \text{ mm}, F_1 = 15 \text{ kN}, F_2 = 25$ kN, $tan\alpha = 3/4$


Hibbeler, S. 60

Stahlstange AC mit einem Durchmesser d_S und einen Aluminiumblock mit Querschnittsfläche A_B gelagert. Bestimmen Sie die größte Last P, die auf den Träger wirken darf, wenn die Versagensspannung für Stahl $\sigma_{St, \, vers}$ und Aluminium $\sigma_{Al, \, vers}$ betragen und die Versagens-Schubspannung der Bolzen τ_{vers} ist. Die Sicherheit der Konstruktion soll S = 2 sein.

a = 0,75 m, c = 2 m, d_s= 20 mm, A_B = 1800 mm², d_G = 18 mm,
$$\sigma_{St, \, vers}$$
 = 680 MPa, $\sigma_{Al, \, vers}$ = 70 MPa, τ_{vers} = 900 MPa

Übungsaufgaben: Lösungen

- Übung 1: $\sigma = 64.0 \text{ kN/m}^2 = 64000 \text{ Pa}$, Druckspannung
- Übung 2: x = 123,8 mm.
- Übung 3: Stift: τ_{mitt} = 63,7 MPa, Stütze: τ_{mitt} = 3,12 MPa
- Übung 4: $\sigma_{AB} = 1.8 \text{ N/mm}^2 = 1.8 \text{ MPa}, \ \sigma_{BC} = 1.2 \text{ N/mm}^2 = 1.2 \text{ MPa}, \ \tau_{EBD \ mitt} = 0.6 \text{ N/mm}^2 = 0.6 \text{ MPa}.$
- Übung 5: d = 18,8 mm, gewählt z.B. d = 20
- Übung 6: P = 171 kN